
NAME: Diana Wanjiru

ADMISSION NUMBER:CS-EH02-24103

LINK (Completed Module):
https://academy.hackthebox.com/achievement/1242115/18

LINUX FUNDAMENTALS

Introduction

I understand that building a strong foundation in cybersecurity is the way to go. Linux being the
first step, understanding the fundamentals strengthens my cyber security journey as it helps me
to navigate through Linux terminal with ease.

1.1 Linux Structure:
I had a look at the definition of linux, the history of linux where I understood how linux
has evolved over the years. Also, I had an in-depth look at philosophy, components,
linux architecture and file system hierarchy of the linux Os where I got to understand the
different directories. Here’s a screenshot of the file system hierarchy.

1.2 Linux Distributions:

I got to understand that Linux distributions - or distros - are operating systems based on
the Linux kernel and each Linux distribution is different, with its own set of features,

packages, and tools. I looked at the different distros that are there and it stuck with me
that Debian distro is a widely used and well-respected Linux distribution known for its
stability and reliability.

1.3 Introduction to shell:
I learnt that knowing how to use the operating system to control it effectively requires
understanding and mastering Linux’s essential part, the Shell. The shell is also known
as the terminal or the command line, and it provides a text-based input/output (I/O)
interface between users and the kernel for a computer system. I understood about
terminal emulation which is software that emulates the function of a terminal and
finally about the different types of shell Bash being the commonly used one.

1.4 Prompt Description:
I looked at the Unprivileged - User Shell prompt and the Privileged - Root Shell
prompt where one is represented with a dollar sign ($) and the other one with a hash tag
(#) respectively. Here’s a screenshot of both.

1.5 Getting Help:

I understood the different ways I can get help in the terminal through various
commands such as man <tool>, <tool> --help, <tool> -h and apropos <keyword>.

1.6 System Information:

I had a look into various commands used to get information about the system. Here’s a
screenshot of the commands with their descriptions.

Also, looked at SSH command which is used to access and execute commands or
actions on remote computers. It has the following syntax ssh username@ [IP address].
I also tackled the following questions. Here’s a screenshot of the questions and
answers I gave as well as screenshot of the process I used to get the ans

1.7 Navigation:
I have gone through various ways to navigate through linux through the terminal via
commands such as pwd, cd and ls.

Got to answer the following questions and here’s the screenshot.

1.8 Working with files and directories:

I got to look at different ways to work with files and directories. Creating files through
touch command, creating directories via mkdir command, moving files via mv
command and finally coping files via cp command.
I answered the following questions. Here’s a screenshot of the questions and answers
with the demonstration of how I got the answers.

1.9 Editing Files:

Editing files has never been easy until I learned about nano and vim editors. To create
and edit a file using Nano, you can specify the file name directly as the first parameter
when launching the editor. For example, to create and open a new file named notes.txt.

Vim is an open-source editor for all kinds of ASCII text, just like Nano. It is an improved
clone of the previous Vi. It is an extremely powerful editor that focuses on the
essentials, namely editing text.

1.10 Find files and directories:

Here I looked at various tools/command used to find files and directories. Such
commands are which e.g. which python, find e.g. find <location> <options>, locate e.g.
locate *.conf which helped me answer the following questions.

1.11 File Descriptors and Redirections:

I got to understand the 3 file descriptors in linux which are:

 1.Data Stream for Input

 STDIN – 0

 2. Data Stream for Output

 STDOUT – 1

 3.Data Stream for Output that relates to an error occurring.

 STDERR – 2

I then got to do the following questions:

1.12 Filter Contents:
 In Linux, several commands make it easier to read, filter, and manipulate text files
directly from the command line. Pagers like more and less allow interactive viewing of
files one screen at a time, with less offering more features and not leaving the output in
the terminal when closed. To display only part of a file, head shows the first lines while
tail shows the last. For organizing data, sort arranges content alphabetically or
numerically, and grep is used to search for patterns or exclude results with the -v
option. When working with delimited text, cut extracts specific fields, and tr replaces

characters, while column formats the output into neat tables. More advanced text
handling can be done with awk, which extracts specific fields, and sed, which
substitutes text patterns across input. Finally, wc helps count lines, words, or
characters, with -l being useful for line counts. Together, these commands provide a
strong foundation for filtering and processing text efficiently.

1.13 Regular Expressions:

Regular expressions (RegEx) are patterns for searching and manipulating text with tools
like grep and sed. Using brackets (...), [...], {m,n} and operators like | (OR) or .*
(sequence), they allow flexible matching. With grep -E or combined grep commands,
you can filter files such as /etc/ssh/sshd_config to find non-comment lines, words
starting with Permit, ending with Authentication, containing Key, or beginning/ending
with Password or yes.

1.14 Permission Management:
Linux permissions control access to files and directories using read (r), write (w), and
execute (x) rights for the owner, group, and others. They can be managed with ls -l to
view permissions, chmod (symbolic or octal) to change them, and chown to reassign
ownership. Special permissions include SUID and SGID, which allow programs to run
with the file owner’s or group’s privileges, and the sticky bit, which restricts file deletion

in shared directories. Together, these tools ensure security and collaboration in multi-
user environments.

1.15 User Management:
User/group management controls account creation, group membership, and privilege use to

keep systems secure (use sudo, su); manage accounts with useradd, userdel, usermod,

addgroup, delgroup, and passwd.

I got to answer the following questions whose answers were directly from the notes
given.

1.16 Package Management:

Linux uses package managers to download, resolve dependencies, and install/remove
software (common formats: .deb, .rpm). Use low-level and high-level tools like dpkg
(manage .deb files), apt/aptitude (higher-level APT front ends), and snap (snap
packages).
Language/ecosystem installers include gem (Ruby) and pip (Python); git fetches source
from repositories. Use apt-cache and apt list --installed to search/list packages, and

sudo apt install <pkg> to install from repos.
You can clone projects with mkdir && git clone <repo>, download .deb files with wget,
then install those files with sudo dpkg -i <file>.deb.

1.17 Service and Process Management:
Services run in the background and are managed with systemctl (e.g., systemctl start
ssh, systemctl status ssh, systemctl enable ssh, systemctl list-units --type=service)
while processes can be inspected with ps and logs viewed with journalctl -u <service>
--no-pager.
To control processes you send signals with kill (see all with kill -l), or use
pkill/pgrep/killall; common signals include SIGKILL (9) and SIGTERM (15).
Job control uses the keyboard shortcut Ctrl+Z to suspend, jobs to list, bg to resume in
background, fg <ID> to bring back to foreground, or run commands directly in
background with & (e.g., ping -c 10 host &).
Combine commands with ; (always run), && (run next only if previous succeeds), or
pipes | (pass output to next), and use these tools together to start/stop services,
troubleshoot with logs, and manage running processes.

1.18 Task Scheduling:

Task scheduling in Linux automates recurring tasks using systemd or cron.

With systemd, create timer/service files, reload with sudo systemctl daemon-

reload, then start and enable using sudo systemctl start mytimer.timer and

sudo systemctl enable mytimer.timer.

With cron, add crontab entries to run tasks on a schedule.

Systemd uses unit files and events, while cron relies on time fields.

1.19 Network Services:
Use SSH: sudo apt install openssh-server -y → systemctl status ssh →

ssh user@host.

NFS (share/mount): sudo apt install nfs-kernel-server -y → edit

/etc/exports → mount <host>:/remote/path ~/target_nfs.

File hosting & VPN: sudo apt install apache2 -y or python3 -m

http.server; sudo apt install openvpn -y → sudo openvpn --config

file.ovpn.

1.20 Working with web services:
Apache is a widely used web server that supports static and dynamic content,

extended through modules like mod_ssl for encryption and mod_proxy for traffic

control. To set it up, install and start it with:

sudo apt install apache2 -y and sudo systemctl start apache2.

If port 80 is occupied, edit /etc/apache2/ports.conf, then restart with sudo

systemctl restart apache2. Verify using curl -I http://localhost:8080.

For interaction, use curl http://localhost to fetch webpage source or wget

http://localhost to download it locally. Alternatively, run a lightweight web

server with python3 -m http.server.

1.21 Backup and Restore:

Linux provides backup tools like Rsync, Duplicity, and Deja Dup. Install Rsync with sudo
apt install rsync -y.
Backup: rsync -av /path/to/mydirectory
user@backup_server:/path/to/backup/directory
Incremental/Compressed: rsync -avz --backup --backup-dir=/path/to/backup/folder --
delete /path/to/mydirectory user@backup_server:/path/to/backup/directory
Restore: rsync -av user@remote_host:/path/to/backup/directory /path/to/mydirectory |
Secure transfer: rsync -avz -e ssh /path/to/mydirectory
user@backup_server:/path/to/backup/directory | Automation: ssh-keygen -t rsa -b
2048, ssh-copy-id user@backup_server, chmod +x RSYNC_Backup.sh, crontab -e → 0 *
* * * /path/to/RSYNC_Backup.sh

1.22 File System Management:
Linux supports multiple file systems like ext2, ext3, ext4, XFS, Btrfs, and NTFS, each
with specific use cases. Inodes store metadata, viewable using ls -il. Disk partitions are
managed with sudo fdisk -l, while mounting is done with sudo mount /dev/sdb1
/mnt/usb and checked via mount; unmounting uses sudo umount /mnt/usb, and open
files can be found with lsof. Persistent mounts are defined in /etc/fstab using cat
/etc/fstab. Swap space is managed by creating it with mkswap, enabling it with swapon,
and tuning its options as needed.

1.23 Containerization:

Containerization runs apps in isolated environments using tools like Docker and LXC.
Docker is installed with sudo apt update, sudo apt install ..., sudo usermod -aG docker
htb-student, and tested using docker run hello-world. Images are built via docker build
-t FS_docker ., run with docker run -p <host>:<container> -d FS_docker, and managed
using docker ps, docker stop, docker start, docker restart, docker rm, docker rmi, and

docker logs. LXC is installed using sudo apt-get install lxc lxc-utils -y, containers are
created with sudo lxc-create -n linuxcontainer -t ubuntu, managed with lxc-ls, lxc-start,
lxc-stop, lxc-restart, lxc-config, and lxc-attach, and resource limits are set by editing
sudo vim /usr/share/lxc/config/linuxcontainer.conf with cgroup options, then applying
with sudo systemctl restart lxc.service.

1.24 Network Configuration:
Linux network configuration is a core skill for penetration testers: it covers managing
interfaces and IPs, controlling access (DAC/MAC/RBAC), monitoring traffic,
troubleshooting connectivity, and hardening hosts with controls like SELinux, AppArmor
and TCP wrappers. Knowing the right commands to view/change interfaces, test
reachability, trace routes, inspect sockets and logs lets you build test environments,
find weaknesses, and verify fixes quickly.

1.25 Remote Desktop Protocols in Linux:
Remote desktop protocols let admins open a full graphical session on a remote
machine for management and troubleshooting. On Linux you can use X11 (X server +
X11 forwarding over SSH), or full desktop sharing with VNC; X11 forwards individual
apps but is unencrypted unless tunnelled, while VNC serves full desktops (usually on
ports 5900+). Secure practice: enable X11Forwarding in SSH and tunnel VNC over SSH
to protect the session.

1.26 Linux Security:
Linux security relies on regular updates (apt update && apt dist-upgrade),

proper firewall rules, and secure SSH settings (disabling root login and password

authentication). Tools like fail2ban protect against brute-force attacks, while

SELinux/AppArmor enforce strict access controls. Additional security comes from

auditing permissions, disabling unnecessary services, enforcing strong passwords, and

monitoring with tools such as Snort, chkrootkit, rkhunter, and Lynis.

TCP Wrappers add host-based access control using /etc/hosts.allow and

/etc/hosts.deny. For example:
cat /etc/hosts.allow

1.27 Firewall Setup:
Firewalls control and monitor network traffic to prevent unauthorized access and
mitigate threats. In Linux, this is achieved using the Netfilter framework with tools such
as iptables, nftables, ufw, and firewalld. Among these, iptables remains widely used,
organizing rules into tables, chains, and rules that define how packets are processed.

1.28 System logs and Monitoring:
System logs on Linux record kernel, system, authentication, application and security
events and are essential for monitoring, troubleshooting and detecting suspicious
activity during penetration tests. Key files include /var/log/syslog, /var/log/auth.log,

/var/log/kern.log and app-specific logs like /var/log/apache2/*; access and audit logs
show who did what and when. Regularly configure log rotation, protect log files, and
review them to spot failed logins, unexpected service activity, clear-text credentials or
other anomalies that indicate compromise. Use simple command-line tools to inspect
and search logs so you can quickly validate findings and tune tests.

1.29 Solaris:
Solaris, developed by Sun Microsystems (later Oracle), is a proprietary Unix OS for
enterprises, unlike open-source Linux. It uses showrev -a, pkgadd -d, find / -perm -
4000, share -F nfs, mount -F nfs, pfiles, and truss, while Linux uses uname -a, apt-get,
find / -perm 4000, lsof, and strace. These command differences reflect Solaris’
enterprise-grade design, security, and system management tools.

1.30 Shortcuts:
• [TAB] – Auto-complete commands, files, or directories.
• [CTRL] + A – Move cursor to beginning of line.
• [CTRL] + E – Move cursor to end of line.
• [CTRL] + [←] / [→] – Jump to beginning of previous/next word.
• [ALT] + B / F – Jump backward/forward one word.
• [CTRL] + U – Erase from cursor to beginning of line.
• [CTRL] + K – Erase from cursor to end of line.
• [CTRL] + W – Erase word before cursor.
• [CTRL] + Y – Paste erased text.
• [CTRL] + C – Kill/stop current process.
• [CTRL] + D – End-of-File (close STDIN).
• [CTRL] + L – Clear terminal.
• [CTRL] + Z – Suspend current process.
• [CTRL] + R – Search through command history.
• [↑] / [↓] – Scroll through command history.
• [ALT] + [TAB] – Switch between open applications.
• [CTRL] + [+] – Zoom in.
• [CTRL] + [-] – Zoom out.

CONCLUSION
Having looked at this linux module, I now have the confidence to fully work on linux and
making it my primary Os. The module gave me a deep understanding of how to navigate
through the terminal and also work with files as well as networking and troubleshooting
my system.

